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Abstract—Variability in human motor control has been a long
observed phenomenon, which has come to be known by some
as repetition without repetition. There are several explanations
for this. One such explanation asserts that many equally optimal
solutions exist for accomplishing the same task that naturally
allows choices in how it can be successfully executed. The aim
of this study was to determine whether variability could be
conditioned within an invisible subspace, using visual and force
feedback. We utilized a novel haptic-graphic boundary-oriented
environment to condition motor variability. Subjects reduced the
variability of their movements, such that action predominated
within a subspace determined apriori; while the untreated group
did not. These results show encouraging preliminary evidence
that neural rehabilitative haptic-graphic interfaces can condition
human motor variability. This type of training may benefit
neurologically impaired individuals, who exhibit the commonly
seen motor deficits of large trial to trial variability, such as victims
of stroke and traumatic brain injury.

I. INTRODUCTION

A number of recent studies have shown remarkable evidence
that interactive environments can influence learning and the
way individuals control movement. Robotic technology is
among the most powerful of such tools, where practicing in
the presence of provocative interactions with sensory feedback
can: improve performance, facilitate adaptation, and even
restore function to brain injured individuals. However, little
attention has been given using these approaches to reducing
motor variability, even though reducing the errors associated
with variability would have a profound impact on areas such
as surgical training, sports performance, piloting, and neurore-
habilitation. This paper draws on some recent findings related
to enhancing feedback in order to influence the consistency of
movement patterns, and provides preliminary proof-of-concept
for conditioning motor variability.

Most researchers agree that through repetitive practice,
conditioning is achieved by forming an internal model of the
environment. For example, someone may learn the character-
istics of damping while reaching in a windy environment and
this model may change if the same individual were submerged
in water. Yet, what is still not known are the exact mechanisms
by which this model becomes influenced and the meaning
behind varability of learned movements.

Human movement scientists speculate that there may be
benefits to variability. One thought maintains that when several
paths exist to attaining a single outcome, some variability in
well learned skills may not be just noise, but rather reflects

meaningful exploration [11]. Still another benefit to optimal
levels of variability may be that it aids in the creation of a
system that is more adaptable to perturbations [17]. From a
mechanical standpoint, reduced variability has been known to
increase the probability of repetitive stress injury [19]. While
variable repetitive strategies minimize sensory degradation and
preserve motor control; in the example of research that trained
owl-monkeys on a gripping task [1].

Naturally, movement variability carries inherent costs as
well. Persistent variability increases energy expenditure and
may reduce performance. Physiologically, variability is en-
dogenous to motor units, the basal ganglia circuits, premotor
cortex, and in reaching movements [2] [6] [12] [22]. For these
reasons, variability and its costs are never fully eliminated.
Some pathological states and special interactions result in
variability that exceeds desired levels, disrupting the natural
balance between benefits and costs.

It is well documented that stroke and victims of stroke and
TBI have increased motor variability [16] [18] [7]. Fitts law
equates the information capacity of the human motor system to
a trade-off between speed and accuracy, known as the speed-
accuracy trade off [4]. For some individuals, their variability
could be due to incoordination, decreased strength, absent
sensation, or a combination thereof [11]. Consequently, they
cannot control their movements as accurately.

MicroSurgery is another area where variability is higher
than desired, due to tremor and low signal-to-noise of the
system [20]. Areas where microsurgery is of notable influence
are reinnervation prosthetics and plastic surgery. Physiological
sensors often do not have the fidelity to allow feedback
to appropriately reject errors. Resulting surgical errors may
then lead to severed vasculature. One compelling question
is whether variability is something frozen by physiological
constraints as some models dictate or whether it can be
changed, perhaps through robotic training.

If physiological sensors are a key element of learning and
adaptation, the next question to ask would be whether or not
artificially increasing the magnitude of such feedback would
promote faster or more complete learning/adaptation. Some
researchers have found that applying greater sensory feedback
forces or visual cues does indeed provide adequate neurolog-
ical stimulus to promote higher levels of adaptation/learning.
This is known as ”Error Augmentation” (EA). EA may be due
to the fact that once outcomes of a motor control action deviate
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from an ideal; our internal model self-adjusts according to the
magnitude of error. Consequently, as the brain becomes better
at modelling the external environment, error in task execution
decreases. Yet no matter how complete our learning is motor
performance always carries with it some inalienable degree of
error and variability due to sensory, motor and environmental
noise.

A compelling question is therefore whether the end-point
motor variability can be reduced, because it is one impairement
that prevents stroke and TBI patients from taking care of
themselves. If stroke and TBI patients have decreased end-
point accuracy, this implies that the information capacity of
the human motor system in stroke patients diminishes post
stroke. However, if the information capacity of stroke patients
can be increased via robotic interactions, the possibility exists
that robotic-assisted rehabilitation would reduce variability
in stroke patients. Evidence is accumulating that supports
this specific possibility [14] [8] [3] [23]. In addition, studies
demonstrate robot assisted therapy to be more effective, when
compared to non-robot aided therapy over specific time periods
[23]. However, to our knowledge no studies aimed to condition
variability.

Although equally optimal solutions exist for many tasks, this
area of research remains largely unexplored. One mechanism
most suited to condition variability, that was used in this study,
was a simple haptic-graphic boundary-oriented approach. We
a region to determine the efficacy of EA in conditioning end-
point variability toward one specific subregion, where many
end-point locations within that subspace would be equally
optimal in terms of completing the task.

II. METHODS

Subjects consisted of 18 healthy individuals (9 control and
9 treatment), ages 18 to 64, with no history of neurological or
motor impairment. All subjects signed an IRB and were ran-
domly divided into 2 groups, described below. This experiment
utilized a three-dimensional, large-workspace haptics/graphics
system called the Virtual Reality and Robotic Optical Opera-
tions Machine (VRROOM). VRROOM is an integrated system
combining display environment, robotic forces, and tracking
of limb movement. VRROOMs visual display system, the
Personal Augmented Reality Immersive System (PARIS), was
developed in the Electronic Visualization Lab at the University
of Illinois at Chicago. PARIS, described in more detail here
[13] is currently the highest quality system available (Fig. 1).
This virtual reality environment which provided stereovision
utilized the Barrett WAM robot from Barrett Technology Inc,
MA for haptic feedback. The WAM was wrapped into the
HAPI and H3DAPI libraries, where the H3DAPI was used to
build our virtual reality environment.

The virtual reality scene consisted of 3 objects in black
space: a blue projectile (1kg virtual mass and 5x5cm), a red
parallelepiped to represent the position of the subject’s hand
(5x5 cm), and a semi-transparent green workspace sphere
(12.5cm radius). The projectile’s home position remained
constant throughout the experiment. The direction of projectile

Fig. 1. Subject seated at the haptic/graphic apparatus. The red cube represents
the subjects hand. The blue cube represents the projectile. Vectors from
the blue cube represent possible launch directions of the projectile (always
intersection the green workspace). The two dotted red parallel lines were not
visible to the subject and represent the boundary region. This image is not
drawn to scale.

launch was randomized with constraints which guaranteed
that the projectile intersected the semi-transparent workspace
sphere at some point, and traveled at a constant velocity of 0.8
m/s. This is important, because all subjects will be asked to
keep their hand within the semi-transparent sphere workspace.

The entire experiment consisted of 3 phases in sequence,
where each phase was 200 trials long. In the first phase,
both groups attempted to catch the virtual projectiles. In the
second phase, referred to as the training phase, graphical cues
and a haptic boundary were enforced when the treatment
group moved their hand moved outside of the parallelepiped
boundary. The visual cue consisted of the workspace sphere
turning from green to red, while the haptic cue consisted
of 4 Newtons of force pointing away from the center of
the workspace. The control group did not receive haptic or
graphic feedback during their training phase. The depth of the
parallelepiped boundary was approximately 3.75cm, and the
height extending ad infinitum. During the final phase, known
as washout, feedback was removed from the treatment group,
making conditions equivalent to the baseline phase.

Trials within this experiment were defined by the following
finite state machine:

1) Wait - This state waited for 0.1 seconds before enabling
the launch state.

2) Launch - this state launched the projectile by applying
a series of pulse forces along a vector until the magnitude of
the velocity reached 0.8m/s at which point all virtual forces
acting on the projectile were turned off.

3) Caught - If the subject slowed the velocity of the
projectile equal to or less than zero before the projectile exited
the semi-transparent sphere workspace, the state projectile was
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defined as caught otherwise it was defined as missed.
4) Stop-After-Launch - This state slowed the projectile to

near zero velocity and then enabled the Chamber state.
5) Chamber - This state applied force on the projectile until

it returns to the home position.
6) Stop-After-Chamber - This state slowed the projectile to

near zero velocity and then enabled the Chamber state.
1) Error metrics: The error metrics used were: distance-to-

edge, distance-to-center, fraction of time spent outside of the
boundary, hand position at its closest point of contact along the
anterior axis (ZPC), and time-to-edge (TTE). All error metric
per phase were calculated by using a window of 20 trials. In
order to determine whether subjects learned the boundary, we
tested if they learned to keep safely away from the edge with
the metric distance-to-edge. To determine whether subjects
learned the center location of the region, we used the metric
distance-to-center. In order to determine what percentage of
the movement remained inside of the region we used the
metric fraction of time spent outside of the region. Lastly,
we explored whether subjects learned first order derivatives
of the boundary region, which was tested by changes in the
average time it would take the subject to reach the edge of the
region. Variability was observed by analyzing the probability
distribution of movement along the anterior axis. The fraction
of time spent outside of the region was calculated by summing
the total number of hand position observations that lied within
the boundary for a given trial and dividing by the total number
of hand position observations. Closest point of contact along
the anterior axis was calculated by selecting the point at which
the users hand was closest to the incoming projectile. The
distance-to-edge was then calculated from the point of closest
contact to the closest boundary edge. If the subject’s hand
was no longer within the boundary, the distance was marked
as zero. Distance-to-center was calculated as the distance from
the same point of closest contact to the center of the boundary.
The mean time-to-edge was calculated for each trial by using
the parametric equation of a line where, Pt = P0 + P0 ∗ t for
every observation made of the subjects hand within every given
trial. Lastly, differential entropy was calculated, described in
more detail here in [9]. Entropy calculations were normalized
with respect to the entropy of a uniform distribution and the
bin number was determined using Izenman’s nonparametric
density estimation [5].

III. RESULTS

As expected, during the baseline phase, both groups spent
most of their movement outside of the boundaries and there
was no difference between groups for any error metric. The
control group spent 91% of their movement outside of the
boundary whereas the treatment group spent 77% of their
movement outside of the boundary. Both the distance-to-edge
and distance-to-center during this phase remained low for both
with no significant difference between groups (p = 0.2, p =
0.1, respectively). Although the time-to-edge was greater for
the treatment group by .18 seconds (p = 0.03). Comparing

mean-squared-errors on both the best-fit Gaussian and best-
fit uniform distributions to the movement distribution along
the anterior axis yielded no differences between groups (p =
0.08, p = 0.8). Within group comparisons showed that neither
the control group nor the treatment group showed preference
toward a best-fit of the uniform nor the normal distribution (p
= 0.07, p = 0.3). Lastly, the entropy of the distribution of both
groups also yielded no difference (p = 0.08), where the mean
normalized entropy for the control group was 0.72 and the
mean normalized entropy for the treatment group was 0.82.

By the end of training, the control group had a higher
fraction of their movement outside of the boundary than the
treatment group (p = 0.002). The fraction of time spent outside
of the boundary was 62% for the control group, whereas the
treatment group spent 17% of their movement space outside
of the boundary. The treatment groups distance-to-edge was
also greater than the control group (p = 0.0007). The control
group had a distance-to-edge of 5.8 mm., while the treatment
groups distance-to-edge was 7.6 mm. The treatment groups
distance-to-center was less than the control group (p = 8e-5).
The control group had a distance-to-center of 3.2 cm while the
treatment had a distance-to-center of 1.5 cm. Lastly, at the end
of training, the time-to-edge for the treatment group was less
than the control group (p = 8e-5). The control group time-to-
edge was 0.45 seconds, while the treatment group time-to-edge
was 1.1 second. Within group comparisons showed that the
control group showed no preference toward any distribution
type, while the treatment group showed preference toward a
uniform distribution (p = 0.07, p = 0.01); where the MSE for
the uniform distribution of the treatment group was 2.6 ∗ 104,
and the MSE for the normal distribution of the treatment group
was 7 ∗ 104. The mean normalized entropy for the treatment
group was 0.62 while mean normalized entropy of the control
group was 0.78. By the end of training the treatment group
has 0.16 less entropy (p = 0.02), more closely representing a
normal distribution.

Comparing the end of baseline phase to the end of training
phase determined whether groups improved after training.
The control group did not show improvement in any of the
following: fraction of time spent outside boundary, distance-
to-edge, distance-to-center, time-to-edge (p = 0.8, p = 0.6, p
= 0.7, p = 0.8). In contrast, the treatment group displayed
improvement for all metrics. The fraction of time spent outside
of the boundary decreased by 56% (p = 0.002), their distance-
to-edge increased by 3.7 mm (p = 0.005), their distance-
to-center decreased by 1.2 cm (p = 0.005), and their time-
to-edge increased by 0.8 seconds (p = 0.004). Comparing
mean-squared-errors on both the best-fit Gaussian and best-
fit uniform distributions to the movement distribution along
the anterior axis data yielded no differences in changes for
the control group (control p = 0.5, p = 0.9). However, the
treatment group became both less gaussian and uniform (p =
0.01, p = 0.03). The mean MSE of the treatment group’s best
fit gaussian distribution started at 1.3 ∗ 104 and increased to
7 ∗ 104, while the mean MSE of the treatment group’s best fit
uniform started at 1.1∗104 and increased to 2.6∗104. Entropy
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did not change for the control group (p = 0.29), yet decreased
for the treatment group from 0.8 to 0.6 (p = 0.01).

Both visual and haptic feedback was then removed from
the treatment group, where the subjects entered the onset of
the washout phase. During the onset of washout, differences
between groups persisted for the fraction of time spent outside
of the boundary (p = 0.05), distance-to-edge (p = 0.05), and
distance-to-center (p = 0.04). Compared to the control group,
the treatment group spent 9% more of their movement inside
of the boundary, was 2.5 mm farther from the edge, and 1.1 cm
closer to the center. Differences did not persist for the time-to-
edge (p = 0.1). The control group’s distribution of movement
along the anterior axis did not favor the best-fit of a Gaussian
nor a uniform distribution (p = 0.4). However, the treatment
group favored the uniform distribution over the Gaussian (p =
0.02), where the mean MSE of the gaussian distribution was
4.2∗104 and the uniform distribution was 1.8∗104. Lastly, the
entropy of the treatment group was less than the control, where
the control group had a mean entropy of 0.81 and the treatment
group had a mean entropy of 0.70. Differences between groups
achieved significance (p = 0.02).

Comparing the end of training phase to the end of washout
phase determined whether groups show any evidence of learn-
ing. Neither the control group nor the treatment group showed
any significant change for distance to edge, distance to center,
fraction of time spent inside of the region, nor time to edge
(control p =0.6, p =0.9, p =0.8, p =0.8) (treatment p =0.5, p
=0.4, p =0.3, p =0.2). With respect to mean squared error of
best-fits, the control group did not show a change in preference
toward a uniform, nor a normal distribution (p = 0.2, p = 0.5).
The treatment group, showed no change in the mean squared
error for the best fit of a gaussian distribution either (p = 0.2),
however the mean squared error decreased from 1.8 ∗ 104 to
1 ∗ 104, in favor of a more uniform distribution. Entropy did
not change for the control group (p = 0.2), yet increased for
the treatment group from a mean of 0.7 to 0.8 (p = 0.04).

During the final trials of the experiment, there was no
difference when comparing groups for any metric. The after-
effects washed out for the fraction of time spent outside of
the boundary (p = 0.1), distance-to-edge (p = 0.07), distance-
to-center (p = 0.09), and time-to-edge (p = 0.1). The control
group spent 81% of their movement outside of the boundary
whereas the treatment group spent 65% of their movement
outside of the boundary. The control group distance-to-edge
was 2.5 mm, whereas the treatment group’s distance-to-edge
was 5 mm of their movement outside of the boundary. The
control group distance-to-center was 0.04 m, whereas the
treatment group’s distance-to-center was 0.025 m. The control
group time-to-edge was 0.2 s, whereas the treatment group’s
time-to-edge was 0.3 s. The control group’s distribution of
movement did not favor a uniform or Gaussian distribution
(p = 0.1). However the treatment group’s distribution of
movement appeared to favor a uniform distribution (p = 0.04),
where the mean MSE of the uniform distribution was 1.04

and the mean MSE of the Gaussian distribution was 2.34. The
control group did not have a movement distribution that was

significantly more Gaussian when compared to the treatment
group (p = 0.8), nor did they have a movement distribution
that was significantly more uniform (p = 0.4). No significant
difference in normalized entropy of the movement distribution
was noted between the control and the treatment group (p =
0.4), where the control group’s normalized entropy was 0.80
and the treatment group’s normalized entropy was 0.83.

Fig. 2. The control group is on the top subplot while the treatment group
is on the bottom subplot. Each colored dot represents a different subject. The
location of the dot shows where the subject’s came closest to contacting the
projectile. The two horizontal lines display the location of the boundary. Blue
semi-transparent histograms are overlayed on top of the raw data to display
the movement distribution of the group along the anterior axis. The baseline
phase is located within trials 1 to 200, the training phase is located within
trials 201 to 400, and the washout phase is located within trials 401 to 600.

IV. DISCUSSION

This study suggests that boundaries and safety margins can
play an important role in learning. At the onset of training,
subjects learn the boundary of the region. Movement outside
of the boundary elicits an error augmenting force. Therefore
subjects reduce their variability and tend to stay within the
limits of safety. However, once haptic-graphic feedback are
eliminated and subjects learn that being outside of the sub-
space no longer imposes a punishing force on their appendage,
their variability starts to increase outside the boundaries again.

Researchers such as Todorov and Jordan have proposed that
optimal control theory of motor control allows variability to
build in task-irrelevant dimensions of space [21]. Furthermore,
Scholz and Schoener explain their uncontrolled manifold
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Fig. 3. Displays the point of closest contact in the XZ plane (view from
above). The rectangle in each phase displays the safety region that treatment
subjects were attempting to stay inside of while performing the task. Note that
feedback was not delivered to the treatment subjects at the end of baseline,
onset of washout, or end of washout.

Fig. 4. Four different views of how Limit-push changes movement. a.
Distance-to-edge. Displays the average distance-to-edge of the boundary at
the closest point of interception. The treatment group moves farther from
the edge by the end of training. b. Distance-to-center. Displays the average
distance-to-center of the boundary at the closest point of interception. The
treatment group moves closer to the center by the end of training. c. Fraction
of time spent outside boundary. Displays what percentage of the movement
was spent outside of the boundaries of the boundary. The treatment group
spent more time inside the boundary by the end of training. d. Mean time-
to-edge. Displays the average time-to-edge for each phase. The treatment
group has an increased time-to-edge by the end of training. Asterisks show
significance at p <= 0.05.

theory where a range joint postures result comparable task
completion [15]. Similarly, this experiment shows that we may

Fig. 5. Movement distributions of uniformity and normality change over
the course of training. a. Each box and whisker plot displays the distribution
of each subjects normalized entropy. The dotted horizontal line at the top
represents the normalized differential entropy of a uniform distribution, and
the dotted horizontal line at the bottom represents the normalized differential
entropy of a normal distribution with a variance equal to the width of the
region. b. Each box and whisker plot displays the mean squared error of the
best-fit of a normal distribution for each subject’s movement distribution. c.
Each box and whisker plot displays the mean squared error of the best-fit of
a uniform distribution for each subject’s movement distribution.

manipulate variability in one dimension. However, position
with respect to boundaries may not be the only parameter
involved in this type of learning.

Our results suggest that derivative space within the boundary
may also play a role in learning tasks, namely time-to-edge;
rather than the nervous system relying soley on boundaries in
Cartesian space. Lee demonstrated how time-to-edge could be
used by drivers who were on a collision course (rather than just
distance, speed, or acceleration/deceleration), and proposed
implications of safe speeds and following distances [10]. It
may be that time-to-edge plays a complimentary role in learn-
ing and unlearning paradigms. However, time-to-edge does not
show evidence of after-effects. Yet, if error augmentation could
modulate time-to-edge, it may be beneficial to observe the
effects of modulating time-to-edge during the washout phase
and whether that would affect variability.

A common challenge in therapeutic rehabilitation is main-
taining motor performance once training is over and the sub-
jects return to everyday tasks. Our data suggest that the effects
of training were retained for at least 20 trials but had washed
out by trial 200. Yet, this is typical for healthy subjects to
’de-adapt’ when there is little motivation to keep altered states
[13]. It remains to be seen if stroke and TBI patients persist.
One way to add meaning to our results would be to decipher
how to increase washout time. Neurological parameters which
dictate rate of washout are still being elucidated. Such issues
may be probed by attempting to decipher the mechanism of
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error adjustment and the meaning of optimal learning.
Whether our nervous system is optimal or not remains

an area of debate between motor control scientists, and the
definition of optimal is not agreed upon. Therefore, any
debate over this topic would not provide researchers with
any consistent logic. For example, one side may argue that a
tightly packed Gaussian distribution of points would suggest
optimality, because this indicates the nervous systems attempt
to attain a single point in space, surrounded by noise. Another
may argue to the contrary that a uniform distribution of points
within a boundarys subspace would show greater optimality,
since this minimizes computational effort - controlling a hand
into a region rather than to a single point.

In this study, although the treatment groups distribution may
have qualitatively looked more normal by the end of training,
these distributions failed Gaussian classification under the
kolmogorov-smirnov test. According to the best-fit of mean-
squared error, distributions for the treated group were more
uniform. Yet, according to entropy calculations, movement
distributions more closely resembled Gaussian curves. These
data may suggest that our nervous system may be neither
purely normal nor uniform; neither center-seeking nor region-
seeking, or that two objectives are being met.

V. CONCLUSION

This study study demonstrated preliminary evidence that hu-
mans were capable of learning an invisible region’s subspace
via force and visual feedback within a haptic-graphic envi-
ronment. Through haptic and graphic biofeedback methods
condition variability. Lastly, we wanted to know whether the
distribution of movement within a redundant task workspace
would appear more normally or uniformly distributed. Subject
movement distributions tended to more closely approximate
uniform distributions according to mean-squared-error best-fit
approximations. However, in terms of information transfer (via
entropy), the treatment group appeared to more closely resem-
ble a gaussian distribution in terms of information transfer.
The results of these data suggest that for this type of task,
feedback may assist in conditioning variability and learning
boundary subspaces . Furthermore, the conditioned variability
resemble gaussian distributions with respect to entropy, while
in cartesian space appear to more closely approximate a
uniform distribution. What is clear is that training treatmens
such as that demonstrated in this study provide encouraging
new evidence for prospects of variability conditioning using
haptic and graphic environments.
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